Observations of a solar flare and filament eruption in Lyman α and X-rays
نویسنده
چکیده
Context. Lα is a strong chromospheric emission line, which has been relatively rarely observed in flares. The Transition Region and Coronal Explorer (TRACE) has a broad “Lyman α” channel centered at 1216 Å used primarily at the beginning of the mission. A small number of flares were observed in this channel. Aims. We aim to characterise the appearance and behaviour of a flare and filament ejection which occurred on 8th September 1999 and was observed by TRACE in Lα, as well as by the Yohkoh Soft and Hard X-ray telescopes. We explore the flare energetics and its spatial and temporal evolution. We have in mind the fact that the Lα line is a target for the Extreme Ultraviolet Imaging telescope (EUI) which has been selected for the Solar Orbiter mission, as well as the LYOT telescope on the proposed SMESE mission. Methods. We use imaging data from the TRACE 1216 Å, 1600 Å and 171 Å channels, and the Yohkoh hard and soft X-ray telescopes. A correction is applied to the TRACE data to obtain a better estimate of the pure Lα signature. The Lα power is obtained from a knowledge of the TRACE response function, and the flare electron energy budget is estimated by interpreting Yohkoh/HXT emission in the context of the collisional thick target model. Results. We find that the Lα flare is characterised by strong, compact footpoints (smaller than the UV ribbons) which correlate well with HXR footpoints. The Lα power radiated by the flare footpoints can be estimated, and is found to be on the order of 10 erg s at the peak. This is less than 10% of the power inferred for the electrons which generate the co-spatial HXR emission, and can thus readily be provided by them. The early stages of the filament eruption that accompany the flare are also visible, and show a diffuse, roughly circular spreading sheet-like morphology, with embedded denser blobs. Conclusions. On the basis of this observation, we conclude that flare and filament observations in the Lα line with the planned EUI and LYOT telescopes will provide valuable insight into solar flare evolution and energetics, especially when accompanied by HXR imaging and spectroscopy.
منابع مشابه
H α and hard X - ray observations of a two - ribbon flare associated with a filament eruption
We perform a multi-wavelength study of a two-ribbon flare on 2002 September 29 and its associated filament eruption, observed simultaneously in the Hα line by a ground-based imaging spectrograph and in hard X-rays by RHESSI. The flare ribbons contain several Hα bright kernels that show different evolutional behaviors. In particular, we find two kernels that may be the footpoints of a loop. A si...
متن کاملThe X 3 Flare of 2002 July 15
An X3-class flare occurred on 2002 July 15 with white-light emission and a complex filament eruption. Observations were made in the optical continuum, H , UV continuum, microwave, and soft X-rays, as well as with high-cadence longitudinal magnetograms. Within the preflare phase, intense heating is observed accompanying upward motion of the filament. At the onset of the impulsive phase, filament...
متن کاملCoronal Implosion and Particle Acceleration in the Wake of a Filament Eruption
We study the evolution of a group of TRACE 195 Å coronal loops overlying a reverse S-shaped filament on 2001 June 15. These loops were initially pushed upward with the filament ascending and kinking slowly, but as soon as the filament rose explosively, they began to contract at a speed of ∼100 km s−1, and sustained for at least 12 min, presumably due to the reduced magnetic pressure underneath ...
متن کاملTriggering Mechanism for the Filament Eruption on 2005 September 13 in Active Region NOAA 10808
On 2005 September 13 a filament eruption accompanied by a halo CME occurred in the most flare-productive active region NOAA 10808 in Solar Cycle 23. Using multi-wavelength observations before the filament eruption on Sep. 13th, we investigate the processes leading to the catastrophic eruption. We find that the filament slowly ascended at a speed of 0.1km s over two days before the eruption. Dur...
متن کاملSoho Eit Observations of Extreme-ultraviolet “dimming” Associated with a Halo Coronal Mass Ejection
A solar flare was observed on 1997 April 7 with the Soft X-ray Telescope (SXT) on Yohkoh. The flare was associated with a “halo” coronal mass ejection (CME). The flaring region showed areas of reduced soft X-ray (SXR) brightness—“dimmings”—that developed prior to the CME observed in white light and persisted for several hours following the CME. The most prominent dimming regions were located ne...
متن کامل